Thursday, June 19, 2008

Etching Procedures

Microscopic examination is usually limited to a maximum magnification of 1000X — the approximate useful limit of the light microscope, unless oil immersion objectives are used. Many image analysis systems use relay lenses that yield higher screen magnifications that may make detection of fine structures easier. However, resolution is not improved beyond the limit of 0.2-0.3-um for the light microscope. Microscopic examination of a properly prepared specimen will clearly reveal structural characteristics such as grain size, segregation, and the shape, size, and distribution of the phases and inclusions that are present. Examination of the microstructure will reveal prior mechanical and thermal treatments give the metal. Many of these microstructural features are measured either according to established image analysis procedures, e.g., ASTM standards, or internally developed methods.

Etching is done by immersion or by swabbing (or electrolytically) with a suitable chemical solution that essentially produces selective corrosion. Swabbing is preferred for those metals and alloys that form a tenacious oxide surface layer with atmospheric exposure such as stainless steels, aluminum, nickel, niobium, and titanium and their alloys. It is best to use surgical grade cotton that will not scratch the polished surface. Etch time varies with etch strength and can only be determined by experience. In general, for high magnification examination the etch depth should be shallow; while for low magnification examination a deeper etch yields better image contrast. Some etchants produce selective results in that only one phase will be attacked or colored. Etchants that reveal grain boundaries are very important for successful determination of the grain size. A vast number of common etchants have been developed and it is displayed in Table 1 after this section.

No comments:

LinkWithin

Related Posts with Thumbnails